

#### Nuevas exigencies en la investigación biomédica (en Oncología): Vision de los centros

Emiliano Calvo Director, Investigación Clínica Centro Integral Oncológico Clara Campal

## Summary

- Inefficient regulatory impulse: *Better drugs, faster and cheaper* for our patients
- Need for Early Phase trials to be more *informative*
- *Adaptation* of study designs and clinical units to the type of drugs in development

## Regulatory impulse...

- FDA responsibilites:
  - "advancing the public health by helping to speed innovations that make medicines more effective, safer, and more affordable"
    - Better drugs, sooner, at lower cost

## ... but few, "bad", late and expensive drugs

#### New Drug and Biologics Approvals and R&D Spending



R&D expenditures are adjusted for inflation; curve is a 3-year moving average for NME/NBEs Sources: Tufts CSDD; PhRMA, 2014 Industry Profile



# ... Unsustainable system: disproportionate R&D expenses...



Sources: 1970s, Hansen (1979); 1980s, DiMasi et al. (1991); 1990s-early 2000s, DiMasi et al. (2003); 2000s-early 2010s, Current Study



TUFTS UNIVERSITY

## ... high attrition rate



Nature Reviews | Drug Discovery

Kola & Landis Nat Rev Drug Discovery 3: 711-715.

## ... late failure



Nature Reviews | Drug Discovery

Nature Reviews Drug Discovery 2, 609-610 (2003)

## Classical Drug-to-patient process

|                                   | Clinical Trials                                              |             |                                      |                                                        | _                                                                            |              |               |
|-----------------------------------|--------------------------------------------------------------|-------------|--------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|--------------|---------------|
| Discovery/<br>Preclinical Testing |                                                              |             | Phase<br>I                           | Phase<br>II                                            | Phase<br>III                                                                 | _            | FDA           |
| Years                             | 6.5                                                          |             | 1.5                                  | 2                                                      | 3.5                                                                          |              | 1.5           |
| Test<br>Population                | Laboratory and animal studies                                | FDA         | 20 to 100<br>healthy<br>volunteers   | 100 to 500<br>patient<br>volunteers                    | 1,000 to 5,000<br>patient<br>volunteers                                      | A at FDA     | Review        |
| Purpose                           | Assess safety,<br>biological<br>activity and<br>formulations | File IND at | Determine<br>safety<br>and<br>dosage | Evaluate<br>effectiveness,<br>look for<br>side effects | Confirm effectiveness,<br>monitor adverse<br>reactions from<br>long-term use | File NDA/BLA | approval      |
| Success<br>Rate                   | 5,000<br>compounds evaluated                                 |             | 5<br>enter trials                    |                                                        |                                                                              |              | 1<br>approved |

Better drugs, sooner and cheaper... Phase 1 studies: "the most critical step from bench to bedside"

- Not only first time in humans
  - Unquestionably an exciting event!
- The interface between preclinical testing and the start of human exploration of a new cancer drug
  - Integration of preclinical pharmacokinetics, pharmacodynamics and toxicology
  - Starting point for rational clinical development

## Classical Objectives for Ph1 Trials

- Maximum Tolerated Dose
  - Acceptable, manageable, reversible toxicity in a reasonable percentage of patients
  - It assumes dose-dependent activity
- Phase 2 scheme
- Preliminary profile of side effects of the drug

#### Unmet need in Clinical Drug Development:

# *Transform* Early Phase Clinical Trials to become more informative

## Waves of cancer drugs

*Darwinian adaptation* of clinical trials designs and clinical units to the characteristics of the different families of drugs in early clinical development

|                  | сутотохіся           | TARGETED             | IMMUNOTHERAPEUTICS       |
|------------------|----------------------|----------------------|--------------------------|
| МоА              | Wide spectrum        | Selective/Specific   | Selective/Specific       |
|                  | Tumor cell           | Tumor cell/stroma    | Immune cell              |
|                  | Wide activity        | Specific activity    | Wide actitivy            |
| Clinical effects | Toxic                | Less toxic           | Less toxic               |
|                  | Early                | Early                | Late (out of DLT window) |
| Ph1 objectives   | RD                   | RD                   | RD/Feasibility           |
|                  | Side effects profile | Antitumor activity   | Antitumor activity       |
| Recommended dose | Toxicity based       | Tox, Activity, PK/PD | ટં?ટં?                   |
|                  | Easy                 | Less easy            | "Arbitrary" (?)          |

#### Three waves of early studies designs

Historical evolution of clinical trials designs: waves and challenges

- 1/ "Classical" designs: the era of cytotoxic drugs
- 2/ "Precision Medicine" designs: the wave of targeted drugs
- 3/ "Seamless designs": the immunotherapy tsunami.

## 1/ Classical designs: cytotoxics



Duration of trial

Phase I trial classical design: standard 3+3 design

## More Informative "classical" Early Phase studies

#### "Pharmacological Audit Trail"



Modulation of the corresponding Downstream readout of pathway activity

For example, changes on apoptosis, invasion,

· For example, tumor regression, time to progression, survival

#### Workman P. Nature Chemical Biology 12, 689-700, 2006

# *Transform* Early Phase Clinical Trials to become more informative:

# Biopsies (solid, liquid, basal, on therapy), PKs, activity, toxicity...

### Data, data, data

Professional multidisciplinary teams, highly specialized, full-time dedicated, perfectly coordinated, of clinical research in Oncology

#### 2/ Precision Medicine designs: What's the target?



#### 2/ Precision Medicine designs: What's the target?



### 2/ Precision Medicine designs: Targeted agents

#### What's the drug doing?

- Sorafenib (Raf kinase inhibitor): VEGFR1–3
- 5-Azacytidine (antimetabolite): DNA Methyltransferase
- Imatinib (PDGFR): bcr-abl, kit
- Crizotinib (MET): EML4/ALK, ROS-1
- Iniparib (PARP): alkylating agent forming adducts with cysteine rich proteins
- Tivantinib (MET): anti-tubulin

## Basket/Umbrella studies

Basket Umbrella Lung-MAP Sub-Studies for Treatment **Colorectal Cancer** Lung Cancer **Multiple Myeloma Ovarian Cancer** Sub-Study B Sub-Study D Sub-Study A Sub-Study C changes listed **Breast Cancer** Various Rare Cancers 50 % GDC-0032 50 % Chemo-PD-0332991 therapy (Taselisib) therapy (Palbocidib) therapy

## Challenges of targeted studies

Number Needed to Analyze: Biomarker-Driven Clinical Research

NNS = \_\_\_\_\_1\_\_\_\_

(fraction with biomarker X assay specificity X fraction trial-eligible X fraction giving informed consent)

|                                   | Fraction<br>with<br>biomarker | Assay specificity | fraction trial-<br>eligible | fraction<br>accepting<br>participation | Pt Needed to<br>Analyze |
|-----------------------------------|-------------------------------|-------------------|-----------------------------|----------------------------------------|-------------------------|
| HER2+ in Breast<br>cancer         | 25%                           | 90%               | 70%                         | 50%                                    | 13                      |
| ALK fusion in NSCLC               | 5%                            | 90%               | 70%                         | 50%                                    | 63                      |
| FGFR fusion in GBM<br>(freq 3-8%) | 3%                            | 90%               | 70%                         | 50%                                    | 105                     |

## Challenges of Precision Medicine studies

- Rapid evolution of knowledge about targets and drugs
  - Agents found not to be effective against target
  - Evaluation of the wrong molecular aberration (MET amp vs exon 14 skipping mut)
  - Variants of unknown significance
  - Agent found to be efficacious... is there a rationale for continuing study?
- It requires flexible, adaptive design and only a few arms may ultimately be successful -> what to do next?
- Tumor heterogeneity
- Who pays for molecular testing platform?
- Non-biopsiable disease

## **Precision Medicine studies**

- They are here to stay!!:
  - Accessible holistic molecular screening
  - Enthusiasm of patients and physicians for molecular screening
  - Liquid biopsies

### 3/ Seamless designs: Immunotherapy tsunami



n = 22

Pembrolizumab development

### Seamless designs: complexity

#### Trends in Clinical Trial Protocol Complexity

|                                                                                             | 2000-2003 | 2008-2011 | Increase in<br>Complexity |
|---------------------------------------------------------------------------------------------|-----------|-----------|---------------------------|
| Total Procedures per Trial Protocol (median)<br>(eg, bloodwork, routine exams, x-rays, etc) | 105.9     | 166.6     | 57%                       |
| Total Investigative Site Work Burden<br>(median units)                                      | 28.9      | 47.5      | 64%                       |
| Total Eligibility Criteria                                                                  | 31        | 46        | 48%                       |
| Clinical Trial Treatment Period<br>(median days)*                                           | 140       | 175       | 25%                       |
| Number of Case Report Form Pages per<br>Protocol (median)                                   | 55        | 171       | 211%                      |

## Challenges of seamless studies

- Challenging intellectual complexity
  - Slots updates, dynamic selection criteria, dose/escalation mistakes
- Trials never seem to close to enrollment
  - Higher work load (PIs, RNs...) per study
  - Increasing number of amendments (reconsents, training)
- Competitive/challenging slots: many arms, few slots, many sites

## Challenges of seamless studies

- New endpoints in Early Phase: costs, PROs, efficacy...
- Re-building of Clinical Trials programs
  - Sophisticated low-volume "three-star Michelin" plus very efficient high-volume "McDonalds franchise" in same restaurant!
  - Different tumor type populations
    - Knowledge and expertise needed
    - Synergy early/late phase programs

## What's next



Jean-Charles Soria at 2015 ECCO meeting

## Revolution in clinical studies designs



Fast-track designation or even regulatory approval might be a potential goal now: <u>These novel designs allow for good drugs to show early how good they are</u>!

## Revolution in clinical trials designs



## Will the future provide us with only two types of studies?:

- *Non-randomized Studies* ("old" Ph1/2), for great well-defined drugs
- Randomized Studies ("old" Ph 3),

for drugs that are not that good or understood



## Regulatory driver impulse

- Regulatory agencies lately allow for quicker access of patients to innovative drugs
  - Outstanding signal of activity in Ph1/2 might be enough for breakthrough designation or conditional approvals
  - Increasing number of approved novel drugs to compete against each others
- However, the real medical value is to be confirmed with randomized studies after fast-track conditional approval
  - Is it ethical? How to do it?
- Still, faster approval does not bring lower prices and wider access to drugs
  - Fixed high prices
  - Disconnection between value and cost

#### **Price and Value**



Drug Access market:

- Highly interventional
- We need a <u>libertarian</u> open-market revolution

10 Euros

"Todo necio confunde valor y precio" (Antonio Machado)



# Investigational hospitals



**BIG DATA** 

"Drugs for patients" instead of "Patients for drugs"